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The Hamiltonian usually analyzed in investigating particle motion in a quantum
field is:

H =Hp +Hv+Hint
in which 'Hp corresponds to the particle intrinsic energy, Hv to the quantum
field energy, Hint to the energy of particle-field interaction.

In order to deal with a discrete spectrum, the whole system is considered in
a certain finite space of volume V , for example, in a cube with side L = ¥V,
and nonperiodic boundary conditions are imposed. Here, it is understood that the
passage to the limit as V - o , corresponding to the transition to a continuous
spectrum, is always kep! in mind,.

If the analyzed quantum field can be expanded into noninteracting oscillators,

then:

1 # +
H, = 5 (?)hmf(bfbf + bfbf) _

where ©p is the oscillator frequency; bf, ﬁf are the quantum amplitudes with

-
known commutation relations corresponding to Bose statistics. The f generate

a discrete spectrum for finite V which transforms into a continuous one as

>
V—> ® . Thus, for example, f , in many problems, is the quasi-wave vector

2n 2n 21 .
with the components (L_ Ny T o T n‘B) , Where N, Dy, n3 are positive and
negative integers,

For nonrelativistic particles without an external field:
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Hp 26 24 by

The same expression can be used when an external field exists, if only the method
of equivalent mass is used.
A typical form of the interaction energy is the expression of the three-dimen-

sional, homogeneous field linearly dependent on the quantized functions, for example:
* +
= [ KEF - TOVEY) &' o+ L KE - FOWSY) o

Expanding VY(¥) in plane waves normalized in the volume V :

i('f?)
¥(r) = 2 bf
(£) VA

we arrive at the expression:

f (fr)
H, =(I§?_Lel( I°)b +?J-el r f?

int

-3
in which the 2, ¥, are proportional to < .

Vi

In this paper, we used the cited typical expressions for H , H , H

e Bys Hipy and,

therefore, we assume thats
-2 +

(1) =L+ 2 2 hog(bgb, + b by) + 3 {lke 1(fr)b . ZL -1(#7) f}
2(2) (£)

Hamiltonians of this form are considered in various problems.

Let us recall the problems of impurity-particle motion in helium II [1,2,3];
electron motion in a semiconductor [4], nucleon interaction with a scalar meson
field in the nonrelativistic approximation.

Somewhat more complex Hamiltonians, but of substantially the same form, are
analyzed also in nonrelativistic theories of electron interaction with an electro-
magnetic field, of nucleon interaction with pseudoscalar and vector meson fields,

etc,

Let us note that although the analyzed Hamiltonian (1) is one of the simplest
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in the problems of particle interaction with a quantum field, the exact solution
of the appropriate wave equation is impossible in every case in the modern state
of the science.

Consequently, approximate methods of perturbation theory must be drawn upon.

The known, ordinary schemes of this theory are used directly in analyzing the
case of weak coupling of particles with a field when the principal terms in the
Hamiltonian are Hp and Hv and Hint is a small perturbation.

However, in a number of problems the particle-field coupling cannot be con-
sidered weak;

For example, let us indicate the case of strong coupling when Hint is pro-
portional not to a small but to a large parameter and also the, mathematically-
similar, case of 'adiabatic coupling' when the field 'kinetic energy' is small.

Let us take é specific example and let us analyze just the motion of an
electron in an ionic crystal using the model proposed by S. I. Pekar [ﬁ].

In this model the existence of the periodic field of the ionic lattice is

taken into account by the effective mass method and, consequently, it is considered

that
> »>2
H =&
P 2

The electron interaction with the lattice is considered as specified by its inter-
action with the polarizing (optical) waves corresponding to inertial polarization.
Here, the ionic lattice itself is replaced by a dielectric continuum,

Starting from these representations, Hint is taken as:

] _e/,(?(?")(?;- ) g

in

>
where P(;) is a vector corresponding to the inertial part of the specific polar-

ization.
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Since Hint is not zero only for longitudinal waves, the transverse waves
can be eliminated from the considerations completely and the field of longitudinal
waves can be taken as the quantum field with which the electron interacts.

-
Then, expanding P(fh in plane waves normalized over the volume V , we can

write:
7 1(fr) +
P(I‘) = (?) -m f V‘ 3 Pf = P..f

and Pf cén be considered as the generalized complex coordinates characterizing

the field.

Using this expansion, we obtain:

.i-)
Hint=lme P2 -—;-]-'—-P el(fr)
(£) |£] ¥V
Finally, the field energy in the Pekar theory is:
2 2
. h™w 2
1 Un . 1 hin % 5
H == 2 =(P,P_.+PP_.)=% Z{=PP_-
v Z(f) Cf f - f- 2(f) Cf f =-f LLTI anaP_f

where @, are the frequencies of the ion optical oscillations; cp are certain
constants.

Therefore, the complete Hamiltonian describing the motion of the electron in
the ionic crystal in the model considered is represented by the expression:

2

2 2
(2) HeobBlp 4 lme 31 Ji(Er) | unP _hT, 2 3
24 1 (f)lfW 2(f) o f-f 'B_(f)“’ffanan

In a number of cases, the ion oscillation frequencies are sufficiently small.
Then, the first three terms in the expression for H will be principal and the
fourth, corresponding to the kinetic energy of the longitudinal, polarizing ion
oscillations, will be small and we obtain, here, a typical example of the coupling
we called adiabatic.

Using the introduction of the quantum Bose-amplitudes
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b = flt P 4 £t 3 .o P - £
£ Roge, £ ° | Bn 3P % °t B C, -f B 3

the Hamiltonian (2) leads to the general form (1) cited earlier, with the coeffic-

T v
In order to formulate, mathematically, the assumption on the smallness of the ®p
frequency, we can consider 'VE; proportional to some small parameter e . Then
QLf is said to be proportional to e and hmf to be proportional to 52 . Con~

|QJ

"J

f

ients:

sequently, we can speak of adiabatic coupling in the general case of the system

described by the Hamiltonian (1), if we put:
2

(3) ﬂf=€f, hcof=€vf

The adiabatic character of the coupling, determined by the Hamiltonian (1) with

the coefficients (3), becomes especially explicit if we transform from the Bose-

amplitudes to the complex coordinates:

+
b, +Db +
£ -f
(b) q :—————-—; q =q
b £V b -f
and the canonical conjugate momenta:
+
b, -Db
0 £ -f +
(5) ~-i=z=—=p.=1it ——— ; Dp.=p_
Actually, then the Hamiltonian (1) with the coefficients (3) can be written as:
3#
»2 I~ L B +B
i(fr) 1 € o f
(6) H=E + ZA.q.e +5 2 veQ Qe + 5= Z VD Do AL = —————

in which the field kinetic energy enters as a small parameter.
Let us note that a number of problems in which the kinetic energy could

be considered as a small perturbation was already investigated using perturbation

theory.
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For example, let us cite the problem of the influence of the nucleus motion
on the energy level of the electrons in the molecule [ﬂ However, the absence
of translational degeneration is characteristic for all these solved problems,

In our case of the problem of particle interaction with a field there is always
translational degeneration inasmuch as the Hamiltonian (1) is invariant with respect
to the group of transformations:

> > > -»
r—>r+a ; a=const

(7) 3 + +

b, —> bfe"i(fz) 5 by —> bfei(m
or, in complex coordinates:

> > > -i(?'Z)
(8) T—>r+d ; gp—>qe

Because of the degeneration, the known methods of adiabatic approximation are
inapplicable here and it would be necessary to construct a new special form of
perturbation theory.

The explanation of this new scheme, developed by the author and S, V. Tiablikov,
is the subject of this paper.

Let us make a number of preliminary remarks. Thus, because of the Hamiltonian
invariance with respect to the group of transformations (7), the total momentum of

the system

> 1

>

Zh f bbb, =P = const
f°f

(£)

-
p +
is maintained. Using the variables (L),(5), the total momentum can also be
represented as:
- ->
(9) P=p-ih 2
(£)
“a
Since P commutes with H , we can use this vector to enumerate the energy levels,

Let us take any independent system of observations ...aj. .. commtating with H

»
which generates a complete system with P and let us denote the energy levels and
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the corresponding eigenfunctions through:

E=E13>’.o'aj'o. ’. \F;‘%"

Now, let us show that the derivative

i JON I
AR M

aF
is the average particle velocity for the ?ﬁ,...a . state, Ac?ually, let us
perform the canonical transformation !
- ->
b —> e—i(f;)zf ; ;f - ei(f;)gf
Pty FaFon 2t L

in the Hamiltonian (1) . Then

P-h 2 F.Z z
( (£) f=r ) * + 1
H = (f;&%i‘&f + ZLfgfi + 2 ho (?:TC + )

2u (£)

and
> - » +
r==(P-hZf¥xx)
(£) £°r

rw

-
in which, here, the components of P can be considered as c¢ -numbers,
Let us write the wave equation:

(3 - B3 N» =0

,oooa.oto ,...a.-‘.

and let us differentiate it with respect to P . We obtain:

(8- & )a% <ﬁ-9§>y 0

ab P
or
T E
(H - E) 9g+(r--a—,311= 0
oP oP
from which



that is

%
= (¥.r¥)

o |y
+og 1 59

which proves the correctness of the assumption made.

Now, turning to the formulation of the new adiabatic approximation scheme
which is applicable to the Hamiltonian of type (6), let us note that it will be
more expedient to make certain variable transformations in order to give the wave
equation a more convenient form. In order to explain their physical meaning, let
us visualize how the particle must move for a state close to the lowest energy
level., Evidently, a fluctuating motion - 'tremor' - specified by its interaction
with the zero-point oscillations of the field must be imposed on the uniform and
rectilinear particle motion.

Let 3 be the part of T which refers to the uniform, rectilinear motion
and let X be the fluctuating part.

Keeping in mind the group of transformations (8), it appears natural to us to
make the change of variable such that all the variation transforms to 'a , here,
reducing (8) to the pure translation 'a without touching upon ¥ and the new
field coordinates.

Consequently, we should put:

.'l-)
7=3+7% ; - g e 1(fa)

U = Y¢
and should consider (8) as the transformation
T >3+3

for which X and G, remain invariant. On the other hand, if the parameter e

should equal zero exactly, that is, if the field kinetic energy could be neglected

completely, the variables Gf would commute with the total energy and the energy

level could be considered a function of Gf :

E=E(...Gf...)
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The Gy would have specific numerical values for the lowest energy level and, pre-
cisely those, for which:
E(...Gp...) = min

Because & is small, but not zero, in the case analyzed, we put:
* *

=up 5 Lp=Q

Gf=uf +le L

where ue are certain numbers which will be determined later and the Qf are new
variables. Therefore, we arrive at the change of variable:

ye-1(F)

>
(10) F=0+2% 3 qf=(uf+an

These transformations introduce instead of the variables ?,...q the variables

f. ..
E,'{,. ..Qf... which are three larger in number than before and, consequently, we
must impose three independent, additional conditions, for example, on Qf .

Let us take any complex numbers Ve satisfying the 'substantiality relations!

_ 3
Ve TV

and let us impose the three additional conditions

(11) (?)? ;"(-fo =0

on Qf. In order to simplify the calculations, it will be convenient to choose

Ve SO that the orthogonality relation

#%
(12) (?)fafsvfuf = 8.5

where fa,fB are components of the vector ‘i") , would be satisfied.

Strictly speaking, these last relations do not limit the freedom of choice
of v, inasmch as we can succeed in satisfying (12) for arbitrary v, by an
appropriate linear transformation in the ? space.

Counting the additional conditions (11), we have just as many independent

variables among the new E,K,.,.Q

pee s as before,
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Now, let us consider the wave equation

(H-E)¥ =0

in which
2

(13) H=-—A + 3 A

fS) )

h

i(fr)
e + q .4 2 v
(f) Vedlgie T 2 (£) by aq_f aqf

rol-

and let us transform it to the new variables by starting from the usual derivative

transformation formulas:

O & B NN -
x oF 0Q ¢ of aq@ £123) OF OXC
(£)° f  (1¢a€3) q (1€a<3) or

(1h)
3Q

r 3 /38 a X 3
= 2 + +[—
0q, oQ (% ) ) ('
qk (f) k £ qk —3 aqk 5?
First of all, let us note that the relation

(3)f e P - up

IOJ

Q

=0

. >
resulting from (10), (11) shows that 3 is a function of 9, independent of r .

Remarking also that

1, i)
Q= 2lae™ Y - uy)
we find from (1)
o - é_
oF o
3 1 i(kQ) a3 3 3
(16) -i-é——-=-Eel qu'('f'a <—i—‘; +1——+lZfof
q U 39 ) (£)
where
' 5 (‘?) . 3
Pl =P~ vy (f)k ugPe 5 Pp=- 3Q,
a‘i
In order to clear expression (16) we must find 3 Hence, let us differentiate
k
(15). We will have:
>
A e 1<kq> i3 f(?ég— qufel(fQ) -0
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or

L X 3 -
1«:\);'ke1(§cTS +i?z ~i?(f %§_§$f(uf + sQf) =0
(£) %

Hence, because of the orthogonality relation (12):

> -, > >\
(17) 9 _ itk | 2R3 \Eq -0
Expanding the desired function in a series of powers of the small parameter, we
obtain:
4o d
- 3 > 3
sk 3 xR T @ Faee? 2 PASED FEqq + ..
I T € T () fete

Substituting these series in (16) and then, together with (10) in (13), we find
an explicit expression for the operator H in the new variables represented by
an expansion in powers of e . It is eésy to confirm that the variable _q’ is
not contained explicitly in the transformed operator H , as it should be becanse
of the invariance of H with respect to the translation q 93 + '5 .

The variable a arises in H only through the canonical momentum conjugate
to it.

Let us explain the physical meaning of this quantity.

Because of (10} we have

a ag
3 ar® 3 £ 8 . - > a
— = I s — 4+ ZeZe—=43a-1 Z fq
3  (1€a<3) O ar% (£)3F 9% oF (£) f9a9

and, consequently,

Therefore, we see on the basis of (9) that the quantity considered is the total

momentum of the system:
*
- ih -a:‘ =P
9q

Inasmuch as ¢q does not enter explicitly in the transformed operator H , we can



12,

eliminate this variable by putting

¥ - epBED] 7R, 000 0)

>
Then, we obtain the wave equation for F in which P will enter as the usual
¢ -vector.
) >
It is convenient to introduce instead of P the vector:
-> 2_’,
(18) I=¢F

->
As simple computations show, the fact is that if we should consider P to be a

—
'zero order' quantity, then the dependence of the total energy on P would only

appear starting with the fourth approximation in terms of the order of ehEQ.
-
—~
Considering i; to be a quantity of order Eﬁ (where I is a 'zero order!
€

quantity), we will perceive this dependence in the zero approximation.

Finally, let us note that we must still complete one simple tranformation of

the wave function

s
Py . £
(19) F = exp[l(?) = Qf] ¢
. . : 5) St . O . .
which reduces to substituting - 1-56— t for -1 3q; in the field energy
£

wave equation, in order to make possible the expansion of the wave function in a
series of increasing powers of the small parameter.
Here s, are certain complex numbers which we will determine later. Hence,
we will require that
3¢

S_.p = 5S¢

in order to guarantee the substantiality of the exponent. Furthermore, since the
Qf variables are related through condition (11), we can put, without limiting the

generality of the choice of s.:

(19,) Sfus. =0
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Actually, if any Si" do not satisfy these relations, we can always write:

*
- . =
sf-sf+(‘f}?§vf 3 4 uks
(k)
and, thus, introduce new quantities s h which, on the one hand, already satisfy
(191) and, on the other hand, do not change the value of the exponent under con-

sideration because of (11):

Z s8]Q. = Z s8.Q
Carrying out all the transformations mentioned above, we obtain, finally, the

wave equation:

(20) (Ho + el + 52H2 + ... - E)¢ =
in which
*
2 L iv 2
_ AN L2 2.1 £ e
H = T by + (f) Acuge + 2,(g)vf]ufl + 2(§)Vf sp + = ( )'
(“ et
H = Zv ~ == (If))P?
1 (£) S¢ h £

(f)?) ive % iv. & "
' (5){ R {Sf T <f§)(§) Vg(sg i (Ig)> @)vg}%

(21) 1 > i > )
B e e ) (Sg * 5 (18) Qg}

N . 3F
iv. iv
3¢ k /=) > PP Voo 3
+(k ? g)vk S =~ R (Ik)>(fg)(kf5(sg + —§h (Ig?vkvang
s L,

iV e e -
- 3y '§k - 'BE (I0)] % (kf)QfP'
(k,f)

- (i)\,}( -k (11?))-, ( > (]Z{Z)vkvkk ( (’ﬁ’))

It should be emphasized that the variables Qf in these equations are related
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through the three relations (11). Since the momenta Pf = -] gﬁ} enter into the

expression for H only in the combinations

P! =P - % 3 (%) w.P
S £r

and since identically
X3 3¢
P' 2fv.Q, - Z £v.Q.P! =0
k(f) £ (£) £k

>
then the vector 2z f$fo commitates with H and (11) are actually compatible
(f)

with the wave equation (20).
Now, let us apply the usual perturbation theory practices to this equation
and let us put:
2

¢ = éo + 5¢1 + & ¢2 * oeee s E= Eo + eEl + 52E2 + ...
Then, we obtain:

(5, - Eo)c}o =0

(, - E)4y = - Hd, + B4,

(Hy = E )y = - Hyd - B¢ + Exd, + Eqdy

® 8 08 0@ 00 B 00 0C 000 0GP SIOEEOE0NSIOCESTEOIEONTLE

(22)

Because of its definition (21), the operator H ~does not act upon the variables
Qe of the wave function and, consequently, the first of equations (22) has a
solution of the form:
’
¢O = (p()\)g(...Qf.‘.)
with the arbitrary functions O(...Qf...) .

Putting

iv 2
(23) E =W+ i ) vfluflz + %(?)vf Sp + -h—-f (.ff?)’

we see, also, that ¢(K) satisfies the equation:

2 -
e (TN )q, i
(2L) (— % o3+ (?)Afufe ~wpd -0
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Let us assume that the lowest level W = Wo for this equation belongs to the
discrete spectrum and is separated from the continuous spectrum level by an energy
slot.

Let us also assume that the Wo level for (24) is non-degenerate and let us
denote the corresponding normalized eigenfunction through qo(K) . Then, desiring
to investigate the energy level sufficiently close to the lowest level for the
system under consideration - particles in a quantum field - we must put in (23):

(25) : W=

The appropriate general solution of the first of equations (22) is
-’
¢O = (po(}\)go( K ana . o)

with the function Oo as yet undefined.

Now, let us consider the second of equations (22) and let us note that,

identically:
78N, -5 )é, & =0
Consequently,
* -
(26) {f o me () df - 31}90 -

But the operator
¥ > -
(27) 7 e Ome () ax
is a linear form relative to Q.,P} and, consequently, (26) cannot have a regular
solution with the exception of the case when the operator (27) is identically zero
and when, therefore, it is satisfied by the arbitrary function Oo when El =0 .
Hence, let us select the quantities Up and Sp s undefined up till now, so

that operator (27) will be annulled.

Here, equating the coefficients with Q to zero, we find

(28) A S ei(ﬂ)l“’o(;)lzdi + Vfﬁf - < (39 ( Z (-ﬁ?)>(§f)$ =0
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We cannot, possibly, equate all the coefficients with P% to zero inasmuch as sf
are already related by the three relations (191), but this is not required.
Actually, because of (21),(28) for the operator (27) to vanish, we must guar-

antee the equality:

ive
(29) Zv(*f-—_—.(j[f))Pt =0
(£)
for all possible P! . But, according to the definition, the P! satisfy:
£ ’ £
| ZFupl=0
u =
Therefore, (29) will be satisfied if we select sy SO that
iv
3¢ > Dy,
(30) vf(sf - (If)) = - iu,(TC)

where C 4s a certain vector which must be defined using (191).

Substituting the value found from (30)

%
iv 1u

(31) P 2 2 @

- -
into these relations, we obtain an equation relating C to I :

[53)

£

‘
I

Q

-;(

=h 2
(£)

(32) lug |

<

Furthermore, substituting the value (30) into (28), we obtain the following
expression defining U
%

f £ -i(th
(33) b s e X2

The formulas (31), (32), (33) which are found enable Spr Up to be determined
-
if @o(l) be known.

In order to determine this latter, we would have (2L) which now can be written:

2
(3L) (S_u a3 + ulh) - wo> wo(K) =0
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>>

127 e EN 1o (R 12 an

(35) o(3) = - % ! f'jz.e / 2' oM RiELY
(£) Ve - (3?3

Let us note that since it is required that WB be non-degenerate for the theory

-<>
explained to be applicable, we can always consider the real eigenfunction @(}) .

It is expedient to use its extremal property

2 2 v IA l Ll 2
h Py 2 £ ~1(EN) 2.2y 21° . .
(36) I(®) =-u—f 3) dx - (g) --————12 ’ [ e ¢S(\) d\| = min
with the condition
(37) ez dx =1

in order to determine it in fact,
Before proceeding to the discussion of the properties of the first approxim-
ation obtained, let us continue the analysis of the second of equations (22) and

let us note that, on the basis of the above, this equation can be represented as:
2 x - >
h ; > >
(--23 by + ) - W ¢1 = - (H1 -/ ‘PO(X)Hl‘PO()\) dk)‘Po(X)Oo(...Qf...)

In order to find ¢1 let us consider the eigenfunctions @n(i) (n £ 0) of the

equation:

2
h - > _ > _
(38) (- =5 b5+ TV wn) ¢ () =
which generate with wo(gb a complete orthonormal system of eigenfunctions.
Then, evidently:
>
> f@n({)Hl«Po(x)cK 2
(39) ¢ = - Z ) ——g—gr—— 9, (. Qpu ) + @ (N6, (L1 Qp )
(n;éO) n o}

where Ol(“'Qf"') is as yet an arbitrary function. Evidently, the summation

here also includes the integration over the continuous spectrum.

Now, let us consider the third of equations (22) and let us write it as:

n by $9 +E®O
- M U0 - W J 4y = - H% 0 + BP0 - Hdy
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The condition that this equation be solvable is:
% -> * > >
/ wo('{)szo(x)oo X + /% (NH4dX - B0 =0
or taking (39) into account
(T— Ez)go(o-an-o-) = O

AL *
* e X axse Dre ) ax
(10) r-7 8 DR K-z /% Hlnw wfn 5%
° (n#0) n_ o

Therefore, the solvability condition of the second approximation equation leads to

an equation determining OO,E Similarly, the solvability condition of the third

2 *
approximation equation yields an equation determining Ol ,E3 etc,

Now, having explained the process of successively obtaining the coefficients
of our power expansion, let us turn to the analysis of the first approximation.

Since El = 0 , then the energy of the system will be, according to (23)

(30), in this approximation:

2
(L1) E°=WO+%Z lufl2 v +-(-§_8)_
(f) £
Hence, differentiating we find: .
F 2

3E, AW l o, % OUp (72 o el
(L2) i N i i ! | A2 vEr— (fC)

ac® ac®  %e)lac aC £ (f)

On the other hand, differentiating (2L), we obtain:

2 > 3P (?\) oW
- h (£3) (tn)
i .é-l-‘- At * (?)Afufel - WO _5‘2&_ +(§)A l ¢ ()\) g q)O( ) =0

from which

2>
oW, 1(fx) > %y ()2) » O
— = ZIAff 19 x)l a — 7 == Z v - U, —=
3C (£) dC (£) f ac

and, consequently, on the basis of (L42) and (32):

~ 3¢

-a-f9=-z(;, (?)) °r lzilfu + U, X (fc) flu f?E))

¢ (Ut T )l T e (f) Ve
8 oTf

(1¢g<3) acC
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Therefore, we have:

2 4
%o 5 % 1, ol Pl g 1
a1® (1143) ac® a1® M1ge3) |(1@¢3) ac® 1% P(1443) or°
that is
> agb h a&%
C=h—==5—
oI e~ oP

But é% is the system energy in the approximation assumed and, consequently,

a&o

v
a?- av
where ‘gév is the average particle velocity. Therefore, we see that the vector
8. represents this average veloéity to the accuracy of the factor 25 .
Now we can turn to the determination of the particle effectiveemass.

> >
Let us denote the value of @ (A),W_ for C=0 through ¢ (A),W
0 ) 0,0 o,

0
We have:
2 -
(- %I  CAACE wo’o)%’o('i) =0
(13) N 4|2 R
5,3 == s s e, D8

For simplicity, let us assume that IAflz, ve are radially symmetric functions

> >

of the quasi-wave vector f and that ? o()\) is radially symmetric relative to
3

>

A . Then, expanding Eo in powers of C , we obtain if we stop at the term pro-
portional to CZ :
(Lh) E =E +%73 —23 Iu(o)f2 c?
o 0,0 B(f) ve ' T
where
1 (0),2
Eo,o Yoo §(§)Vf| £ |
(0 5 @
o -1 -
u.” = .v;/ j¢o,o(x)] di

or
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viv h2f2 (0),2
E,=E  +—5 2 " |ug |
s© (£) 3vfs

Therefore, the effective mass in the first approximation will be:
1 . 1% | (0),2
Herf = 3 é) PR lug™ |
Vo€

Let us note that (L43), for the case cited earlier of eleétron motion in an
jonic erystal, in the form of an appropriate variational principle and (LL) for
the energy were obtained first by S. I. Pekar [51 using semiclassical theory in
which the electron is considered quantum and the field, classical, Starting from
the same semiclassical theory, L. D. Landau and S, I. Pekar [71 first obtained a
formula for the effective mass.

Here, still within the limits of the first approximation, we can find a cor-
rection to (LL) showing the deviation of the dependence of the energy and velocity
on the quadratic.

In order to do this, it is sufficient to determine ¢°(I),wo from (34), (35)

to the accuracy of terms of order 02 inclusively.

Substituting the expansions in powers of C:

@ (T) (x) P N ¢ I
(a,B) a,p
W =Ww + z c%Ps _«...
(o] 0,0 (G:B) CL,B
in these equations, we obtain the linear equation determining %a B’ Sa 8 :
2 a2 2 2>
h > el i), -1, (? >
3:— -2—5 Ai + UO()\) - W ’B( ) 2(?)—-\7}:—' e fe (PO()‘){(I,B()‘) d\ =

A 2 -y L -
- {(z) _!_13;_ 19BN, 1N 9 (N %X + 5, B} cpc(‘{)
£f) v ’
£

Moreover, because of the normalization condition, we have:

1, Me,® a -
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It is easy to note that in the case considered:

-e

S =W

- >
t, o) = X8 v XD a8 = %,1%,p

Consequently, in the appropriate expansions

S iR L

e 2
(L5) A% >
a - -
N A B IS S i
v £

we can write:
(a,p)
w. P - Ay “Po (1F])
> .
where pl(lfl) is the real radially symmetric function of the quasi-wave vector.

Obviously, we also have:

ul® - ¥ o (17

where PO(IFI) is a real radially symmetric function of £ .
Therefore, substituting the expansion (L45) into (32), we find:
2 : b2
= h f 22, Lh _f°C 2 > P2
I=32 = |A % (|£])C + = 2 —= [A,]" o (|£]) o,(|f]) C
B(f) Ve £! Po B_(f) Ve £ o) 1

from which
2 2 5o N TN .
(L6) B = E 0 +3-(Z) ;— | Ag| (lfl) +T(?‘)T— e 1T e (IE])
Therefore, we can give an estimate for the limits of applicability of the square
law of the dependence of the energy on the particle velocity.
Now, let us turn to the second approximation equation, (LO).

Exposing it using (21) we obtain:

(47) = Z v PUIPIY 4 3 Z(Cf)(Q Pll + PIIQ )
i e(f)"f 3 ST

l
v.Q Q += 2 4 Q .Q —E}O(...Q...)=O
(f) A 2<f,g> f,e-I'g £
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where
Bl =Ey-1/ wo(x)(é'%{>¢ &) ax
% Vs 50(‘{) -1(f‘{)¢n(>\) T I N To<, S
(48) Zl_r,g = - 28.A (n;ZG:O) L /8,00 780 (3) dX
and
(L9) P"-P'-i#@-g—)@ﬁq=1=-%‘ > (gDup - 1¥ zisﬂé_?lgq
£t £ Vg -4 f f(g) g g8 f(g) Vg g

As is seen, the problem of solving (L47) leads to the diagonalization of a quadratic
form. Let us note that the sign of this form is related to the properties of the
minimum in the variational problem (36),(37).

Thus, it is easy to show that if ‘Po(-):) really realizes the minimum and if,
therefore, the appropriate second variation would be positive, then the quadratic
form under consideration, Q) , will be positive. This second variation always

vanishes for a variation of the form (the solutions of the appropriate Jacobi

3% (V)
5¢ = 0 .52‘>

equation):

-~

oA
with the arbitrary constant &% inasmuch as the integrals (36),(37) do not vary
~» -> -
when ®()\) 4is replaced by @(\ + )‘o) .
Now, if the second variation is essentially positive for any 6% then it can
be shown that the quadratic form, {) , will be positive definite and will become
zero only when, identically:

oach = ooc- ; --oP' - onno

£
In this case, the positive definiteness of the analyzed quadratic form is diagonal-

ized by means of the canonical transformation:
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Qf=..]:_1/_ %?(f)b +%(-f)b}
(50) . %

pr=-1 z{x(-f) b -X(f)b}

f ﬁ(m)im w W w

introducing in place of the complex coordinates and the momenta, related through

3T¥q -0 3P upl=0
f = ; fs
() *° (r) *

+

to the usual quantum Bose-amplitudes bm, bm .

In this approximation, ‘Em(f), Xm(f) represent a system of "eigenfunctions!'®
determined through the equations:

E X () =vE(£) - uf(g)&g’hg#g'iw(g) ¢ @HY (1) - v 2 (F)ED T (o)

(g)
(51)
EAD = vif 0+ 2 % 10 - v 3 (D égivgwm(g) +(l§)ﬂg,k‘lw(k)}
+ (Cf‘){— z (Ga(fg) v ‘E (g) + X (f) +—- 3 (fg)v v X (g)}
“h (g) tr (g)
- v, 2 (fg)(gé'S{—% z (B (T, E (1) + X (o)
(g) g (k)
+ -5 z (gk)v x (k)}
Vg (
where
(52) X () =X (£) +v, 2 _zéiﬁéﬁl u ¥ (e)

(g) g
and the orthonormalization conditions in accordance with it:

va?(f)=0 ; zfux(f)-o
(£) (£)
(53) (E)S (05 (8) + L (D)%} = 28(ay - o)

2 Y, (-0)x, (£) - ¥, (f)x (-£)¢ =0
()L oy $
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The corresponding eigenvalues & o 2Te all positive in the case considered.

Carrying out the canonical transformation in (L7), we obtain:

(54) {(i) Em(nm + %) - E}Go =0 ; n =b>

which has an obvious solution.

Therefore, the second approximation energy of the system will be:

(55)  E=W, +.éz|uf1< (Cf)>+ef‘?(>»)(313a¢(i)dk+e 28 (o, +3

(£)

\—/

and, in particular, for our energy level:

E = W +-—(Z ]ul< (Sf)>+s f (X)(C:L-:;‘P(‘X) d'{+-(zc€
£

On the other hand, the energy of a pure field at absolute zero temperature

when there are no particles equals:

-

2
= Zh = v
2(k)‘°k 2 (0 K

Consequently, we must take as the energy of particles in a field at absolute zero:

1 2 B2\ 2,.% =[> 3 >
(56) Ep =W +-§(§)]qu éf +-;}—->+ S <Po()\)(c-iafx ‘PO(X) dix
2 -
* %— (i)(ém - vO))

Expanding this expression in a power series in the velocity

)
0 eff 2
(57) Ep = Ep s Vo

we obtain a correction of order 82 to E; , the energy binding the particles to
the field and to the effective mass.

In the general case, expanding (55) in powers of v__ (with the exception of
the energy of the pure field), it is easy to note that the corresponding corrections

will depend on the temperature.
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In fact, completing the computation is made more difficult by the complexity
of determining the eigenvalues from the system (51).

However, in substance, it is not necessary for us to be able to evaluate the
individual & .

It is sufficient to have a method of determining a sum of the type:

2IERE Y- w0}

Since these sums are symmetric functions of éﬁa), a method to calculate them
directly according to the given coefficients of (51) can be developed without
relying on finding the individual & Y

An explanation of such a method is the subject of the next paper.

In conclusion, let us note that the development of the above first approxim-
ation theory is not altered if we take, not the minimum in (24), but any other
discrete spectrum (as long as it is not degenerate).

Therefore, we investigéted the possible excited states of particles in a field,

The transformation to the second approximation shows that these states are
quasi-stationary and have finite life time.

The case of degenerate states requires special analysis and certain improve-
ment of the substitution of variables (10).

March, 1950
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Mr. Theodore D. Schultz of MIT has called my attention to certain inadequacies
and inaccuracies in my translation of the Bogoliubov paper which are due, equally,
to my misinterpretation and to the poor quality of Russian printing.

First, since the European notation is used, the following corrections should
be made throughout:

(TH —> (53

[£ 7] — (&)

(£.r) = (£,r)
A list of other corrections follows:

Page Line
1 13 from bottom nonperiodic should read periodic
6 2 from bottom observations should read observables
8 12 from bottom all the variation ... should read: tqi'whole variation
translates on q .
9 13 from bottom substantiality should read reality
10 10 from top should read (15)
10 3 from bottom clear should read clarify
10 6 from bottom last term in (16) should read
-
g—%- i-g-a-'+i§§,+ i(?)f QfPi']
12 L4 from bottom substantiality should read reality
15 3 from top slot should read gap
15 5 from top qO(X) should read ¢°(X)
16 1 from top with Pl should read of Pl
16 L from bottom Paragraph should read: The formulas (31)(32),(33) found
21 3 from bottom Exposing should read expanding or developing
22 2 from bottom Paragraph should start: In this case of positive

definiteness, the analyzed quadratic form etc.



